

Use of LiDAR and photogrammetry to develop predictive models of slope stability

Oliver Dabson and Jamie Gilham

Tuesday, 15 October 2019

What is LiDAR?

- Light Detection And Ranging
- A remote sensing method using pulsed laser to measure distances to the Earth
- Generates precise information about the shape of the Earth
- 2 types of LiDAR:
 - Topographic (NIR)
 - Bathymetric (green)

Image credit: BAE systems

LiDAR data collection

- Major hardware components:
 - Laser scanner system
 - GPS (global positioning system)
 - INS (inertial navigational system)
 - Collection vehicle
- Laser beam is transmitted towards target and the reflection is detected and analysed

LiDAR returns

- Laser pulses reflect from objects both on and above the ground surface
- One pulse can be split into many returns
- First returned pulse is the most significant and will be the highest feature
- Last return may be the ground surface

DSM vs DTM

In practice...

Shallow instability

- Landslide shown on BGS 50k mapping
- Evidence of a bench at/near the interface between the Penarth Group and the Mercia Mudstone
- Several surface runout channels are visible in the LiDAR imagery, suggesting that water is important
- Landslide reactivation hazard?

Deep instability

- Possible cambered blocks on eastern valley sidewall (A)
- Shallow mudslide embayments associated with springs (B)
- Depression in Taynton Limestone (probably a former shallow quarry) (C)

Example: Exeter to Newton Abbot, Network Rail

- To develop a Resilience Strategy that identifies a holistic long-term asset management pathway for the EX2NA rail line
- Geotechnical challenges included:
 - Cut-back of coastal cliffs in the 1850s
 - Minimal design, rapid construction
 - History of engineering works and past failures

Woodlands Avenue failure, March 2014

Using LiDAR to uncover terrain

Terrain classification – cliff behaviour units (CBUs)

- CBUs provide an important spatial framework for defining:
 - Principal cliff failure mechanisms
 - Cliff morphology and processes
 - Geology and materials
 - External influences (surface/groundwater, toe erosion)
 - Existing stabilisation measures
 - Geotechnical asset data
- Expert panel review of conceivable cliff failure event scenarios provides indicative hazard rating for CBU

Terrain classification – cliff behaviour units (CBUs)

CH2MHILL.

NETWORK RAIL EXCISER TO NEWTON ADDOTT RESILENCE STUDY CLIPP BEHAVIOUR UNIT DESCRIPTIONS

VetworkRail

Hazard ratings and further study

- High hazard (line affected for >48 hours or potential loss of life)
 - Routine inspections and maintenance, plus:
 - Cliff mapping to facilitate extensions to existing meshing and fencing
 - Intrusive ground investigations
 - Hydrological and hydrogeological study
- Medium hazard (line affected for <48 hours)
 - Routine inspections and maintenance, plus in some areas:
 - Further specialist inspections from track level
 - Cliff mapping and survey of some areas to facilitate extensions to existing meshing and fencing works
 - Drainage study
- Low hazard (negligible impact)
 - Routine inspections and maintenance
 - Limited surveys to facilitate possible extensions to fencing

Future work: Risk

- Understanding the nature of the cliff processes with LiDAR allows for a relative ranking of hazard frequency and preconditioning factors
- Data on exposure to hazard and consequence of hazard at different scales will allow for semi-quantitative risk calculation
- However, inherent limitations of LiDAR made the characterisation of geohazards in some locations very difficult

Vertical cliffs

Photogrammetry – data acquisition

Photogrammetry – UAV deployment (Telscombe cliffs)

		Camera (lens)	
	Sony DSC-H300 (35X optical zoom lens)	Nikon D810 (AF-S Nikkor 24- 120mm 1:4 G ED)	Nikon D810 (AF Nikkor 35mm f/2D)
	Sony	Alkan	Nikon
Megapixels	20.1MP	36.3MP	36.3MP
F	1/2 3" Super HAD	Full frame	Full frame
Frame size		(35.9 x 24 mm)	(35.9 x 24 mm)
	000	CMOS sensor	CMOS sensor
Eccel longth	<i></i>	- / / /)	24mm (prime)*
rocariengin	4.5-157.5mm (zoom)	24-120mm (zoom)	35mm (prime)**
Imaga Staraga	IDEC	TIEE	TIEE
image Storage	JPEG		
Capture mode	Auto	Manual	Manual

Photogrammetry – data acquisition

Photogrammetry – UAV deployment (Telscombe cliffs)

Photogrammetry – software

ADAM 3DM Analyst Mine Mapping Suite 2.5.0 Build 1488

Photogrammetry software platform

- 3DM Calib Cam
- DTM generator
- 3DM Analyst
- Processing point clouds
- Cloud Compare

Surface change and volumetric estimations

• ArcGIS

Interior orientations (3DM Calib Cam)

Interior orientations (3DM Calib Cam)

Exterior orientations (3DM Calib Cam)

Exterior orientations (3DM Calib Cam)

Photogrammetry – processing

Model production (DTM generator)

- DTM statistics (averaged from 12 months of data)
 - 125 DTMs
 - 32.5 million points
 - 688 pts/m²
- Merged DTM files point spacing 0.05m (processing capability)

Photogrammetry – processing

Model example (3DM Analyst)

Photogrammetry – processing

- Models exported as point files
- Point clouds were transformed in CloudCompare
- Data was rasterised with a cell size of 0.1m
- 2.5D surface change detection was completed in ArcGIS
- Removal of edge effects and vegetation (false change)
- Volumetric estimations undertaken in ArcGIS

Surface change – Telscombe cliffs Total volumetric flux 3,889.35m³

Surface change – Telscombe cliffs – successive failures (August – December 2016)

Volumetric estimation

Aug-Sep 152.66m³ (wedge) 47.18m³ (arch)

Oct-Nov 37.66m³ (block)

Nov-Dec 512.33m³ (pillar) 38.49m³ (arch)

Surface change – Telscombe cliffs – successive failures (August – December 2016)

Surface change – Telscombe cliffs – toe erosion (August 2016 – March 2017)

- Probabilistic recession modelling using negative power law scaling of rockfalls and environmental controls
- Rockfall inventory captured over 12 months with a total of 10,085 mass wasting events
- Studies had previously demonstrated that negative power laws best describe landslide magnitude-frequency distributions as expressed by Brunetti et al. (2009):

 $f(V_R)=sV_R^{-\beta}$

 Data was logarithmically binned and normalised by space and time (km⁻² month⁻¹)

Power law estimation parameters for August to September 2016

- (A) frequency density and magnitude of failures for the entire study area
- (B) the predicted vs. observed frequency of failures for all binned data
- (C) frequency density and magnitude of failures for the undefended section
- (D) frequency density and magnitude of failures for the natural defended section (beach)

• Maximum failure volume:

• Minimum set to 1 x 10⁻⁶m³

Numerical constants of the equation were constrained by H_s

Monthly and decadal probability functions of H_s were used from the UKCP09 Medium Emission Scenario (Lowe et al., 2009; Leake et al., 2009; Brown et al., 2012)

Sea Level Rise was accounted for by a time of exposure approach

- Tidal interaction with base of cliff
- Increased from 28.58% to 33.85% for current sea level and sea level predicted in 2089
- Scaling factor applied current condition 1 by 2089 1.0527

Model run for the unprotected cliff line as the shingle beach provides substantial protection to the toe

Unprotected site accounted for 59% of the area but 99.57% of the observed erosion

Model vs Observations

- $r^2 {=} 0.9918$ and the model predicted 97% of the observed $V_{\rm T}$ for this section

Monte Carlo simulation developed and run 10,000 times to determine the most likely erosion scenario

	Current (Conditions	UKCP09 medium emission				
	Log10 Recession (m)		forecast				
			Log10	Recession (m)			
Average	1.311	20.45	1.338	21.76			
Max	2.086	121.97	2.157	143.56			
Min	0.714	5.18	0.659	4.56			
95.5%Cl	1.750	56.26	1.797	62.61			

Discontinuity mapping (3DM Analyst)

391 digitised planes

- 255 joints
 - (JS1 yellow)
 - (JS2 orange)
 - (J blue)
- 28 faults (red)
- 108 bedding planes (not in image)

Kinematic analysis (DIPS 7.0)

Symbol	TYPE					Quantity
0	Bedding	Planes				108
×	Faults					27
+	Joints					256
Colo	r	Dens	ity C	once	entratio	ns
		(0.00	-	2.70	
		:	2.70	-	5.40	
			5.40	-	8.10	
		1	8.10	-	10.80	
		10	0.80	-	13.50	
		1	3.50	-	16.20	
		16	5.20	-	18.90	
		10	3.90		21.60	
		2	1.60	-	24.30	
		2.	1.30	-	27.00	
		Contour Data	Pole	e Vec	tors	
	Max	imum Density	26.	73%		
	Conto	ur Distribution	Fish	ner		
	Count	ing Circle Size	1.0	%		
		Plot Mode	Pole	e Vec	tors	
		Vector Count	391	(391	Entries)	
		Hemisphere	Low	/er		
		Projection	Equ	al An	igle	

Kinematic analysis (DIPS 7.0)

Symbol	TYPE					Quantity
×	Faults					27
+	Joints					256
Color	r	Densi	ty Co	once	entratio	ns
		0.	00	-	1.20	
		1.	20	-	2.40	
		2.	40	-	3.60	
		3.	60	-	4.80	
		4.	80	-	6.00	
		6.	00	-	7.20	
		7.	20	-	8.40	
		8.	40	-	9.60	
		9.	60	-	10.80	
		10.	80	-	12.00	
		Contour Data	Pole	Vec	tors	
	Max	timum Density	11.8	36%		
	Conto	ur Distribution	Fish	er		
	Count	ting Circle Size	1.0	%		
		Plot Mode	Pole	Vec	tors	
	Vector Count	283	(283	Entries)		
		Hemisphere	Low	er		
		Projection	Equ	al An	gle	

Kinematic analysis (DIPS 7.0)

Symb	ol T	PE						Quantity
0	Be	dding Planes						108
×	Fa	ults						27
+	Jo	ints						256
C	olor	D	ensi	ity C	once	entr	ation	15
			0	.00	-	2.	70	
			2	.70	-	5.	40	
			5	.40	-	8.	10	
			8	.10	-	10	0.80	
			10	.80	-	13	3.50	
			13	.50	-	16	5.20	
			16	.20	-	18	3.90	
			18	.90	-	21	1.60	
			21	.60	-	24	4.30	
			24	.30	-	2/	7.00	
		Contour Da	ta	Pole	Vec	ton	5	
		Maximum Dens	ity	26.7	3%			
	C	ontour Distributi	on	Fisher				
	(Counting Circle Si	ze	1.09	6			
	Color	Dip	Dip	Dir	ectio	n	Lab	el
		User	Plan	es				
1		76		204	1		Cliff	face
		Mean Se	et P	anes				
1m		75		169	9		Joint	Set 1
2m		78		233	3		Joint	Set 2
3m		59		288	8		Fault	ts set
4m		1		87			BP s	et

Percentage of mapped intersections favourable to mode:

- Wedge 39.97%
 - 27.82% (primary)
 - 12.15% (secondary)
- Planar 7.16%
- Flexural 0.31%

Symbol	Feature							
	Critical Intersection							
	Intersection							
Kinen	atic Analysis	Wedge S	iding					
	Slope Dip	76						
Slope	Dip Direction	206 35°						
F	riction Angle							
			Critical	Total	9/0			
	Wed	lge Sliding	15946	39899	39.97%			
	P	lot Mode	Pole Vectors					
	Vect	or Count	283 (283 Entries)					
	Intersection Mode Intersections Count Hemisphere Projection			Grid Data Planes				
				39899 Lower				
				Equal Angle				

Wedge failure – analysis

Estimated volume – 2546.84m³

Wedge failure – analysis (Swedge)

Photogrammetry – overview

Developed a reliable UAV photogrammetry methodology for acquiring high resolution datasets for monitoring sea cliffs

Results have comparable accuracy to currently deployed TLS/ALS

Software platforms enable processing of large datasets into manageable formats – enables subsequent data analysis (e.g. surface change, kinematics)

Statistical analysis enabled the first probabilistic negative power law model of cliff recession constrained by environmental conditions to be developed

www.jacobs.com | worldwide

© Copyright Jacobs October 15, 2019